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A status report on the calculations of the contribution of four CP violating operators, the Θ-term,
the quark EDM, the chromo EDM and the Weinberg operator to the neutron EDM are presented.
At this time, there exit precise physical results only for the quark EDM operator by the PNDME
collaboration. First results showing signal in the contributions of the Θ-term and the connected
part of the chromo EDM operator have been presented. The challenge of divergent mixing in the
chromo EDM and Weinberg operators has motivated calculations in the gradient flow scheme.
While there has been steady progress, the challenges remaining are large. Results with O(50%)

uncertainty with control over all systematic errors can be expected for the Θ-term over the next
five years. Prediction of a timeline for progress on the chromo EDM and the Weinberg operators
will depend on when the renormalization and divergent mixing of these operators is brought under
control. The most optimistic scenario is that the gradient flow scheme provides a solution to the
numerical signal and mixing problems for both the gluonic and quark operators.
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1. Introduction

One of the deepest mysteries of the observed universe is the matter-antimatter asymmetry.
The observed universe has 6.1+0.3

−0.2×10−10 baryons for every black body photon [1], whereas in a
baryon symmetric universe, we expect no more that about 10−20 baryons for every photon [2]. It is
difficult to include such a large excess of baryons as an initial condition in an inflationary cosmo-
logical scenario [3]. The way out of the impasse lies in generating the baryon excess dynamically
(baryogenesis, leptogenesis, ...) during the evolution of the universe.

In the early history of the universe, if the matter-antimatter symmetry was broken post inflation
and reheating, then one is faced with Sakharov’s three necessary conditions [4]: the process has
to violate baryon number, evolution has to occur out of equilibrium, and CP (or equivalently time
reversal invariance if CPT remains unbroken) has to be violated.

��CP exists in the electroweak sector of the standard model (SM) of particle interactions due
to a phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix [5], and possibly by
a similar phase in the leptonic sector, given that the neutrinos are not massless [6]. The strength
of the ��CP in the CKM matrix is much too small to explain baryogenesis. Leptogenesis from the
neutrino sector with large lepton-baryon conversion is another possible mechanism, however, no
CP violation in the lepton sector has been observed so far.

The SM has an additional source of CP violation arising from the effect of QCD instantons.
The presence of these finite action non-perturbative configurations in a non-Abelian theory of-
ten leads to inequivalent quantum theories defined over various ‘Θ’-vacua [7]. However, because
of asymptotic freedom, all non-perturbative configurations including instantons are strongly sup-
pressed at high temperatures where rates of baryon number violating processes are sizable. Because
of this,��CP due to such vacuum effects do not lead to appreciable baryon number production.

In short, the overriding consensus is that additional much larger ��CP is needed from physics
beyond the SM (BSM). Even though the BSM theory that describes nature above the TeV scale is
not known, using the tools of effective field theory one can organize, by symmetry and dimension,
possible��CP interactions at the hadronic scale. One then needs to quantify their contribution to the
neutron electric dipole moment (nEDM). Each contribution consists of a product of the coupling
(BSM model dependent) and the matrix element of the low-energy effective interaction (both de-
fined at the hadronic scale0 within the neutron state (BSM model independent). In this review,
I will discuss the status of lattice QCD calculation of the matrix elements of four of the leading,
within the effective field theory framework,��CP operators.

2. Nucleon Matrix elements of��CP operators

Over the past few decades, many extensions of the SM have been proposed in the literature.
At the hadronic scale (∼ 2 GeV), the effects of BSM scenarios that involve heavy degrees of free-
dom at the mass scale ΛBSM > MW can be described in terms of effective local operators composed
of quarks and gluons. Using tools of effective field theory, one can organize all possible effec-
tive ��CP interactions of quarks and gluons based on symmetry and dimension, and independent of
specific BSM theory [8, 9]. In general, operators with higher dimension are suppressed by increas-
ing inverse powers of ΛBSM where ΛBSM is the scale of new physics. The couplings associated
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with these operators encode information about the BSM model at the scale ΛBSM ∼ TeV and the
renormalization group evolution from ΛBSM to the hadronic scale.

The current goal of lattice QCD calculations is to examine ��CP operators with dimension six
and lower. Of these, ��CP four quark operators of dimension six have not been considered because
they are sub-leading in many BSM scenarios and because the lattice methodology to compute their
contribution to the neutron EDM has not yet been developed. Focus of the lattice community has
been on the following four, which encode the leading��CP effects in a large class of BSM models:

LQCD−→L��CP
QCD = LQCD + iΘGµνG̃µν + i∑

q
dγ

qqσ
µν F̃µνq + i∑

q
dG

q qσ
µνG̃µνq

+ dG f abcGa
µνG̃νβ ,bGµ,c

β
(2.1)

where the first term is the Θ−interaction and the last is the dimension six three-gluon Weinberg
operator. The Θ-term is a part of the SM, but is usually neglected because the coupling Θ is
constrained to be smaller than 10−10 by the current bound on the nEDM and/or it is assumed that
some form of a Peccei-Quinn mechanism tunes Θ to zero [10]. Note that the Θ-term can be rotated
into a pseudoscalar mass term im∗(Θ) qγ5q under a chiral transformation [11]. The two dimension
five operators are called the quark EDM (qEDM) and the quark chromo-EDM (cEDM). The matrix
elements that we need to calculate, to lowest order in αem, are

〈n | JEM
µ | n〉

∣∣Θ
6CP

=

〈
n
∣∣∣∣JEM

µ

∫
d4x ΘGµνG̃µν

∣∣∣∣n〉 , (2.2)

〈n | JEM
µ | n〉

∣∣qEDM
6CP

= εµνκλ qν

〈
n
∣∣∣(dγ

u ūσ
κλ u+dγ

d d̄σ
κλ d +dγ

s s̄σ
κλ s
)∣∣∣n〉 , (2.3)

〈n | JEM
µ | n〉

∣∣cEDM
6CP

=

〈
n
∣∣∣∣JEM

µ

∫
d4x

(
dg

u ūσνκu+dg
d d̄σνκd +dg

s s̄σνκs+
)

G̃νκ

∣∣∣∣n〉 , (2.4)

〈n | JEM
µ | n〉

∣∣G
6CP

=

〈
n
∣∣∣∣JEM

µ

∫
d4x dG f abc Ga

µνG̃νβ ,bGµ,c
β

∣∣∣∣n〉 . (2.5)

The couplings dγ

u,d,s are the quark EDMs, the dg
u,d,s are the quark chromo-EDMs, and dG is the

strength of the Weinberg operator. They are generated directly by threshold effects at the scale
ΛBSM or by mixing under renormalization group evolution. They parameterize the strength of new
CP violating interactions that a given BSM theory generates at the hadronic scale. On the other
hand, the matrix elements of the electromagnetic current JEM

µ between neutron states in the presence
of CP violation are model independent and provide the “connection” between these couplings and
the nEDM as exemplified in Eq. (4.2). Note that since each��CP interaction contributes to the nEDM,
the value of (bound on) the nEDM provides a single constraint on the sum of all the contributions.
Nevertheless, lowering the bound on the nEDM will provide increasingly tight and amongst the
most stringent constraints on possible BSM models.

In an ideal world, the best way to calculate these matrix elements would be to simulate a lat-
tice theory with these ��CP interactions added to say the Wilson-clover fermion action. This ideal
approach does not work because these interactions are complex and we do not yet know how to
efficiently simulate theories with a complex action. The approach that works for lattice QCD is
to treat the small dγ,g

q , Θ and dG as perturbations and expand the theory about the normal CP con-
serving action, such as the Wilson-clover action. Then, the lattice calculation involves the product
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of the electromagnetic current JEM
µ and each of these operators as shown in Eqs. (2.2), (2.4),and

(2.5). The qEDM is an exception as the leading contribution to it arises from the modification to
JEM

µ as discussed in Sec. 4.

3. Challenges to the calculation

The contributions of the Θ, cEDM and Weinberg terms to the nEDM are, in most lattice
calculations, obtained from the P and T violating form factor F3 in the decomposition of the matrix
elements of the electromagnetic current within the nucleon state as defined in Eqs. (2.2), (2.4),
and (2.5). For the cEDM operator, the relations are

〈n|JEM
µ |n〉6CP =

F3(q2)

2Mn
ūn qνσ

µν
γ5 un and dn = lim

q2→0

F3(q2)

2Mn
(3.1)

In the extraction of F3, one has to take into account mixing between form factors due to the phase
eiαNγ5 that has to be included in the neutron interpolating operator in the presence of ��CP . This
subtlety has been discussed and resolved in Ref. [12]. In this review, I will assume the reader is
familiar with the correct phase convention, the calculation of this phase αN from the nucleon 2-
point function, and its impact on the extraction of F3(Q2). To keep this review brief, the reader is
referred to the original papers cited for details.

There are two very important challenges to getting results at the physical point for the contri-
bution of the Θ, cEDM and Weinberg operators to the nEDM:

• The first important challenge is the signal in F3 is very small. In fact, in most calculations, it is
barely significant. The matrix elements have to be calculate for non-zero momentum transfer,
excited-state contamination (ESC) removed, F3 extracted and extrapolated to Q2 = 0. Each
of these steps is non-trivial. In Secs. 5 and 6, I describe newly developed variance reduction
methods that reduce the errors by almost a factor of ten.

• Even after a signal has been demonstrated, defining the renormalized cEDM and Weinberg
operators and obtaining finite results in the continuum limit is non-trivial. The reason is
they mix with the same and lower dimension operators under renormalization. The 1-loop
analysis of the cEDM operator [13] shows that it mixes with the pseudoscalar iqγ5q and
the Θ operators. Of these, the mixing with iqγ5q is quadratically divergent in all lattice
formulations, i.e., both chiral symmetry preserving and violating. As a result, the mixing
coefficients have to be determined very precisely nonperturbatively. In fermion formulations
such as Wilson-clover that explicitly break chiral symmetry, there is an additional divergent
mixing with imqγ5q. The mixing pattern of the Weinberg operator is even more complicated.

4. Quark EDM operator and its matrix element

In the presence of ��CP interactions, the electromagnetic current, defined as δL /δAµ with L

given in Eq. (2.1), gets an additional term

e∑
q

qγ
µq−→ e∑

q
qγ

µq+ ε
µνρσ pν

∑
q

dγ
qqΣ

ρσ q , (4.1)
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Figure 1: Illustration of the two- and three-point correlation functions calculated to calculate the flavor
diagonal tensor charges which give the contribution of the quark EDM operator to nEDM. (Left) the nucleon
two-point function. (Middle) the connected three-point function with source-sink separation τ and tensor
operator insertion on time slice t. (Right) the analogue disconnected three-point function that contributes to
the flavor diagonal operators.

∫ 𝑑#𝑥	𝐺𝐺'

✖
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Figure 2: Illustration of the correlation of the Θ term with the nucleon 3-point function. The diagram for
the Weinberg operator is the same with GG̃ replaced by GGG̃.

which, at ~p = 0 is the quark bilinear operator with tensor structure. There is also a term analogous
to Eq. (2.4) that is generated. It is, however, suppressed by αem and therefore not considered. Thus,
to leading order the contribution to neutron EDM is given by

dn = dγ
ugu

T +dγ

dgd
T +dγ

s gs
T , · · · , (4.2)

where gu,d,s
T are the flavor diagonal tensor charges given by the matrix elements 〈N|qσ µνq|N〉 and

dγ

u,d,s are the corresponding BSM couplings.

The lattice methodology for the calculation of gu,d,s
T is robust and reliable results at the physical

pion mass Mπ = 135 MeV and in the continuum limit have been presented in Ref. [14]. A brief
description of the methodology of lattice QCD calculations of nucleon 3-point functions for the
analogous axial operator is given in a companion paper in the proceedings of this conference,
PoS(Spin2018)018. It involves calculating the three correlations functions illustrated in Fig. 1, with
the qEDM (tensor) operator inserted at time t in the connected and disconnected 3-point diagrams.

Lattice calculations of nucleon charges have been reviewed in the FLAG 2019 report [15].
Data for the tensor charges exhibit small discretization or finite volume corrections and have been
stable over time. The current best estimates, in the MS scheme at 2 GeV, are

gu
T = 0.784(28)(10); gd

T =−0.204(11)(10); gs
T =−0.0027(16) . (4.3)

Both the connected and disconnected contributions were obtained at the physical point by fitting
data at multiple values of a and Mπ and removing the leading continuum-chiral corrections. In
short, flavor-diagonal tensor charges have been calculated with control over all systematics [14, 15].
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Using these results, the authors of Ref. [14] analyze constraints on the split SUSY model [16,
17, 18]. This model is pertinent because in it qEDM is the dominant ��CP operator. Using the
experimental bounds dn ≤ 2.91026 e cm [19] and de ≤ 1.11029 e cm [20], gave the upper bound
dn ≤ 4.11029 e cm for the split-SUSY model [14]. More BSM theories can be analyzed as results
for other��CP operators become available.

5. Calculation of the Θ-term

The Θ-term breaks P and T invarinace and thus CP by the CPT theorem. In the absence of a
Peccei-Quinn mechanism, the Θ-term arises naturally in the SM. Operator mixing under renormal-
ization group flow of the cEDM and Weinberg operators between ΛBSM and the hadronic scale also
generates it, i.e., the cEDM and Weinberg operators mix with the Θ-term under renormalization.
Therefore, calculating its contribution to nEDM is essential. Attributing the cause of a non-zero
nEDM to an intrinsic Θ-term versus one generated from BSM interactions will be challenging and
will require knowing the matrix elements of all [leading]��CP operators.

A number of calculations of the contribution of the Θ-term to nEDM using the F3 form factor
method have been done [21, 22, 23, 24, 25, 12, 26, 27]. Of these, calculations done prior to Ref. [12]
have poor [no] statistical signal and did not properly include the phase induced by��CP operators in
the nucleon state as pointed out in Ref. [12].

The calculation involves the correlation of the purely gluonic operator
∫

d4xGµνG̃µν (topolog-
ical charge) with the nucleon 3-point function 〈N(0)JEM

µ (t)N(τ)〉 as shown in Fig. 2. Depending
on the lattice generation methodology, the value of the gluonic term, the topological charge, can
exhibit very long time auto-correlations. The signal in the fermionic part is very good and typi-
cally 〈N(0)JEM

4 (t)N(τ)〉 is used. The correlation between the two is, therefore, the fermionic part
weighted by the topological charge. Consequently, if the topological charge is frozen during lattice
generation, then the correlation and the projection on to F3 will have a poor/biased signal.

Preliminary analysis with evidence of a signal has been presented in Ref [26]. This study used
only one 2+1 flavor domain wall ensemble with a = 0.1105 fm and Mπ = 340 MeV; calculated
only the connected 3-point nucleon correlation function; and did not remove the ESC. The topo-
logical charge was defined in the gradient flow scheme to reduce noise in it. Most of the effort has
been devoted to developing/testing the following variance redution method to get a signal. In the
correlation of

∫
d4xGµνG̃µν with the nucleon 3-point function, the authors propose to use a 4-d

volume centered about the nucleon correlator over which to sum GµνG̃µν rather than the whole
lattice which gives the topological charge. This setup is illustrated in Fig. 3. The motivation is that
GµνG̃µν on points outside this volume contribute only noise. While there is some evidence for vari-
ance reduction as a result, the issue of introducing a possible bias has not been settled. One could
apply a variant of the standard bias correction method [28, 29] by calculating the correlation with
both the full and subvolume sum for a few of the nucleon 3-point functions on each configuration.
Such a bias correction method has not yet been explored.

Furthermore, the authors contend that a reliable signal at the physical pion mass will need a
new level of precision or alternate methods. Chiral perturbation theory predicts that the contribution
of the Θ-term to dn vanishes in the chiral limit as [30, 31, 32]

dΘ
N = aM2

π +bM2
π lnM2

π + · · · . (5.1)
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Figure 3: Using a 4-d cylinder about the nucleon 3-point correlator in which to sum Gµν G̃µν to reduce
noise as explored in Ref. [26]. The expectation is that points outside contribute only noise, however, the
possibility that a bias is introduced has not been established.

Thus, as one tunes Mπ → 135 MeV in lattice simulations, the precision of the calculation will have
to be increased significantly to keep the fractional error the same. For example, on going from
340→ 135 MeV, the value of dΘ

N ∝ M2
π is expected to decrease by a factor of about six. Thus, the

statistics will have to be increased by O(100) to keep the fractional error the same [26].
Results from six ensembles with Mπ ≥ 410 MeV have just been published in Ref. [27]. The

topological charge density is again calculated in the gradient flow scheme. The central values are
all negative, lie between −0.0021 and −0.0070, but five of them differ by less than 2σ from zero.
There is no evidence of a dΘ

N ∝ M2
π behavior at these heavy pion masses, and a less than convincing

chiral-continuum fit gave dn = −0.00186(59) Θ e fm. Clearly, far more precise calculations near
the physical pion mass are needed before a result can be presented with confidence.

My bottom line conclusion on the contribution of the Θ-term is that, while, the methodology
for the calculation of F3 from the Θ-term is now established and there are no show stopping issues
of renormalization, more work needs to be done to demonstrate a 5σ signal on Mπ & 350 MeV
ensembles, and O(100) more to obtain results at Mπ = 135 MeV and in the a→ 0 limit.

6. Enhancing the signal in F3 with the cEDM operator

Calculations of the cEDM operator need to address both the signal and the renormaliza-
tion/mixing problem. The two calculations reported in Refs. [33, 26] are both based on extract-
ing dn from F3. No progress has been made so far to calculate the mixing coefficients non-
perturbatively for the two app

The work described in Ref. [33] uses the Schwinger source method to include the��CP interac-
tion in the Dirac action. The authors show that the phase αN associated with the neutron ground
state and generated by the ��CP interaction can be extracted reliably from the 2-point function. To
obtain a signal in F3, which a priori was poor, they developed a general variance reduction method.
It exploits correlations between an observable O and a number of other quantities Ri with 〈Ri〉= 0.

6
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For the connected part of cEDM, the variance of the combination O+ξiRi was shown to be reduced
by almost a factor of ten by a suitable choice of Ri and optimizing the parameters ξi.

The extraction of the three form factors, F1, F2 and F3, from the 8 matrix elements (real and
imaginary parts of the four components of the vector current) forms an over complete set. The
authors find that the results for the unrenormalized connected contributions to F3 from different
combinations give different estimates. These differences point to possible large excited state and/or
discretization effects that need to be resolved. The real hurdle in these calculations, in schemes such
as RI-sMOM, is controlling the divergent mixing with the lower dimension pseudoscalar operator.
Work has, therefore, been initiated to do the calculation in the gradient flow scheme.

Results for the unrenormalized connected contributions to both the cEDM and pseudoscalar
operator using the direct 4-point method have been presented in Ref. [26]. Having demonstrated a
signal in F3 for both the cEDM and pseudoscalar operator it mixes with, they are now investigating
the position-space renormalization scheme to control the mixing problem, and on including the
disconnected contributions.

7. The Weinberg operator

The numerical calculation of the Weinberg operator is similar to that of the Θ-term except
for the additional serious complication of mixing under renormalization. The method currently
being explored that would avoid this mixing on the lattice is gradient flow [34, 33]. In Fig. 4,
I show a comparison of the susceptibilities of the topological charge and the Weinberg operator
as a function of the flow time. The data for the topological susceptibility quickly flattens out as
expected while that for the scale-dependent Weinberg susceptibility continues to evolve. The next
step is to calculate the 4-point correlation function as a function of the flow time. Simultaneously,
our extended collaboration at LANL is working to relate the gradient flow scheme to the continuum
MS scheme. With this matching in hand, we will need to demonstrate that there exists a window in
flow time in which results in the continuum are independent of the flow time. In short, a number of
developments have to pan out before physical results can be obtained.

In Fig. 5, I show data from the topological charge and the Weinberg operator versus Monte
Carlo configuration number on one of our ensembles at flow time tWF = 5. It is clear that the two
are highly correlated. Thus any techniques for improving the signal in the Θ-term can be applied
to the Weinberg operator.

8. Conclusions

The prospect of reducing the upper bound on the nEDM from current and future experiments,
and possibly finding a value is exciting. It will signal T (and CP assuming CPT) violation larger
than in the standard model, and will put stringent constraints on BSM theories provided the matrix
elements of ��CP operators can be calculated reliably. A number of groups are using large scale
simulations of lattice QCD to calculate the matrix elements of the four operators reviewed, and
their contributions to the nEDM. These calculations are extremely hard except for the quark EDM
operator. Clearly new ideas and algorithms are needed! My summary of the status and prospects
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Figure 4: Susceptibility of topological charge (left) and Weinberg operator (right) versus the flow time tWF.
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Figure 5: The data for the topological charge (red) and the Weinberg operator (blue), at flow time tWF = 5,
plotted as a function of the Monte Carlo configuration number. The data show very strong correlations
between the two for sufficiently large flow time.

for obtaining results of dimension six and less operators, in order of the most likely within the next
five years, is the following:

• The quark EDM operator. The leading contribution of this operator has been calculated and
results with O(5%) errors, after extrapolation to the continuum limit and at the physical pion
mass, have been obtained as discussed in Sec. 4.

• The Θ-term: Calculations of its contribution to nEDM have the longest history. Evidence of
a signal is growing, and I expect validated results with O(50%) uncertainty to be available
over the next five years.

• The chromo EDM operator: Methods to get a 5σ signal are being developed and tested.
Results including both the connected and disconnected contributions at multiple values of
the lattice spacing require O(100) or more in computing resources. Thereafter, tests and
control of the divergent mixing with the pseudoscalar operator can begin.

• The Weinberg operator: The mixing problem under renormalization is severe. Working in
the gradient flow scheme is the approach of choice being investigated [34, 33]. First tests
of the methodology and the numerical signal are being performed. For both the Weinberg
and chromo EDM operators, estimates with O(1) uncertainty are possible in five years if the
gradient flow method works.
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• 4-fermion operators: So far there is no published work on a renormalization framework
for these operators that will be suitable for lattice calculations nor have exploratory lattice
calculations begun. We are unlikely to see significant calculations over the next five years, if
for no other reason than due to the limited access to computer time. Most groups are likely
to channel focus and resources to the previous three operators.
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